Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 677
1.
Front Microbiol ; 15: 1378311, 2024.
Article En | MEDLINE | ID: mdl-38646627

Objective: The impact of hepatitis B virus (HBV) on the risk of type 2 diabetes (T2D) remains a controversial topic. This study aims to analyze the causal relationship between HBV and T2D using Mendelian randomization (MR). Methods: Single nucleotide polymorphisms on chronic hepatitis B (CHB), liver fibrosis, liver cirrhosis, and T2D were obtained from BioBank Japan Project, European Bioinformatics Institute, and FinnGen. Mendelian randomization was utilized to evaluate exposure-outcome causality. Inverse variance weighted was used as the primary method for MR analysis. To assess horizontal pleiotropy and heterogeneity, we conducted MR-Egger intercept analysis and Cochran's Q test, and the robustness of the MR analysis results was evaluated through leave-one-out sensitivity analysis. Results: MR analysis revealed that CHB was associated with a decreased genetic susceptibility to T2D (OR, 0.975; 95% CI, 0.962-0.989; p < 0.001) while liver cirrhosis (OR, 1.021; 95% CI, 1.007-1.036; p = 0.004) as well as liver cirrhosis and liver fibrosis (OR, 1.015; 95% CI, 1.002-1.028; p = 0.020) were associated with an increased genetic susceptibility to T2D. MR-Egger intercept showed no horizontal pleiotropy (p > 0.05). Cochran's Q showed no heterogeneity (p > 0.05). Leave-one-out sensitivity analysis showed that the results were robust. Conclusion: CHB has the potential to act as a protective factor for T2D, but its effectiveness is constrained by viral load and disease stage. This protective effect diminishes or disappears as viral load decreases, and it transforms into a risk factor with the progression to liver fibrosis and cirrhosis.

2.
Adv Sci (Weinh) ; : e2400492, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38569466

The cooperative diagnosis of non-coding RNAs (ncRNAs) can accurately reflect the state of cell differentiation and classification, laying the foundation of precision medicine. However, there are still challenges in simultaneous analyses of multiple ncRNAs and the integration of biomarker data for cell typing. In this study, DNA framework-based programmable atom-like nanoparticles (PANs) are designed to develop molecular classifiers for intra-cellular imaging of multiple ncRNAs associated with cell differentiation. The PANs-based molecular classifier facilitates signal amplification through the catalytic hairpin assembly. The interaction between PAN reporters and ncRNAs enables high-fidelity conversion of ncRNAs expression level into binding events, and the assessment of in situ ncRNAs levels via measurement of the fluorescent signal changes of PAN reporters. Compared to non-amplified methods, the detection limits of PANs are reduced by four orders of magnitude. Using human gastric cancer cell lines as a model system, the PANs-based molecular classifier demonstrates its capacity to measure multiple ncRNAs in living cells and assesses the degree of cell differentiation. This approach can serve as a universal strategy for the classification of cancer cells during malignant transformation and tumor progression.

3.
Sci China Life Sci ; 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38573362

The human face is a valuable biomarker of aging, but the collection and use of its image raise significant privacy concerns. Here we present an approach for facial data masking that preserves age-related features using coordinate-wise monotonic transformations. We first develop a deep learning model that estimates age directly from non-registered face point clouds with high accuracy and generalizability. We show that the model learns a highly indistinguishable mapping using faces treated with coordinate-wise monotonic transformations, indicating that the relative positioning of facial information is a low-level biomarker of facial aging. Through visual perception tests and computational 3D face verification experiments, we demonstrate that transformed faces are significantly more difficult to perceive for human but not for machines, except when only the face shape information is accessible. Our study leads to a facial data protection guideline that has the potential to broaden public access to face datasets with minimized privacy risks.

4.
Int J Surg ; 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38608032

BACKGROUND: Whether health inequalities of disease burden and medical utilization exist by ethnicity in Asian breast cancer (BC) patients remains unclear. We aim to measure ethnic disparities in disease burden and utilization among Mongolian and Han female breast cancer patients in China. MATERIALS AND METHODS: Based on data extracted from Inner Mongolia Regional Health Information Platform, a retrospective cohort study was established during 2012-2021. Disease burden including incidence, 5-year prevalence, mortality, survival rate, and medical cost were analyzed and compared between Han and Mongolian patients. RESULTS: A total of 34,878 female patients (mean [SD] age, 52.34 [10.93] years) were included among 18.19 million Chinese, and 4,315 [12.03%] participants were Mongolian. Age-standardized rates of incidence are 32.68 (95% CI: 20.39-44.98) per 100,000. Higher age-specific incidence and 5-year prevalence were observed in Mongolian than in Han. The cost of breast cancer annually per capita was significantly lower for Mongolian than Han in FBC ($1,948.43 [590.11-4 776.42] vs. $2,227.35 [686.65-5,929.59], P<0.001). Mongolian females showed higher all-cause mortality (30.92, [95% CI: 28.15-33.89] vs. 27.78, [95% CI: 26.77-28.83] per 1,000, P=0.036) and breast cancer-specific mortality (18.78, [95% CI: 16.64-21.13] vs. 15.22, [95% CI: 14.47-16.00] per 1,000, P=0.002) than Han females. After adjusting covariates, Mongolian were associated with increased all-cause mortality (HR, 1.21, [95% CI, 1.09-1.34]; P<0.001) and breast cancer-specific mortality (HR, 1.31, [95% CI, 1.14-1.49]; P<0.001). CONCLUSION: The findings of this cohort study highlight a higher level of disease burden with unmet medical demand in Mongolian patients, suggesting that more practical efforts should be made for the minority. Further research is needed to explore the concrete mechanisms of the disparities as well as eliminate health disproportion.

6.
Sci Total Environ ; 927: 172212, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38580121

Organophosphate esters (OPEs) have garnered significant attention in recent years. In view of the enormous ecosystem services value and severe degradation of coral reefs in the South China Sea, this study investigated the occurrence, distribution, and bioaccumulation of 11 OPEs in five coral regions: Daya Bay (DY), Weizhou Island (WZ), Sanya Luhuitou (LHT), Xisha (XS) Islands, and Nansha (NS) Islands. Although OPEs were detected at a high rate, their concentration in South China Sea seawater (1.56 ± 0.89 ng L-1) remained relatively low compared to global levels. All OPEs were identified in coral tissues, with Luhuitou (575 ± 242 ng g-1 dw) showing the highest pollution levels, attributed to intense human activities. Coral mucus, acting as a defense against environmental stresses, accumulated higher ∑11OPEs (414 ± 461 ng g-1 dw) than coral tissues (412 ± 197 ng g-1 dw) (nonparametric test, p < 0.05), and their compositional characteristics varied greatly. In the case of harsh aquatic environments, corals increase mucus secretion and then accumulate organic pollutants. Tissue-mucus partitioning varied among coral species. Most OPEs were found to be bioaccumulative (BAFs >5000 L kg-1) in a few coral tissue samples besides Triphenyl phosphate (TPHP). Mucus' role in the bioaccumulation of OPEs in coral shouldn't be ignored.


Anthozoa , Environmental Monitoring , Esters , Organophosphates , Water Pollutants, Chemical , Animals , China , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism , Organophosphates/analysis , Organophosphates/metabolism , Esters/analysis , Bioaccumulation , Seawater/chemistry , Coral Reefs
7.
J Econ Entomol ; 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38592125

Given the rapid spread and potential harm caused by the small hive beetle, Aethina tumida (Coleoptera: Nitidulidae) in China, it has become imperative to comprehend the developmental biology of this invasive species. Currently, there is limited knowledge regarding the impact of A. tumida female oviposition site preference on larval growth and development. To examine this, we investigated the ovipositional preference of adult female A. tumida on bee pupae, beebread, banana, and honey through a free choice test. Furthermore, we assessed the impact of these food resources on offspring performance, which included larval development time, survival, wandering larvae weight, emerged adult body mass, reproduction, and juvenile hormone titer. Our results showed that A. tumida females exhibited a strong preference for ovipositing on bee pupae compared to other diets, while showing reluctance toward honey. Moreover, A. tumida larvae that were fed on bee pupae displayed accelerated growth compared to those fed on other diets. Furthermore, A. tumida fed on bee pupae exhibited higher weights for wandering larvae, and emerged adult, increased pupation rates, enhanced fecundity and fertility, as well as a larger number of unilateral ovarioles during the larval stage when compared to those fed on other diets. Overall, the results indicate that the oviposition preferences of A. tumida females are adaptive, as their choices can enhance the fitness of their offspring. This finding aligns broadly with the hypothesis of oviposition preference and larval performance. This study can provide a foundation for the development of attractants aimed at promoting the oviposition of the A. tumida adults.

8.
Microbiol Spectr ; : e0409823, 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38602399

Targeted next-generation sequencing (tNGS) can be used to perform Mycobacterium tuberculosis (MTB) complex-specific amplification or target capture directly from sputum samples, yielding simultaneous coverage of many genes and DNA regions associated with antimicrobial resistance (AMR). Performance comparisons of tNGS and another molecular testing tool, Xpert MTB/rifampicin (RIF), have been empirical. Here, using a dilution series of a RIF-resistant clinical isolate of MTB, we found that tNGS had a slightly lower limit of bacterial detection (102 CFU/mL) compared with Xpert MTB/RIF (103 CFU/mL) in culture medium. However, the minimum detection limit of the rpoB S450L mutation in this isolate was significantly lower with tNGS (102 CFU/mL) than with Xpert MTB/RIF (106 CFU/mL). Sputum samples collected from 129 suspected pulmonary tuberculosis patients were also prospectively studied with the clinical diagnosis as a reference, revealing that the sensitivity of tNGS (48.6%) was higher than those of culture (46.8%), Xpert MTB/RIF (39.4%), and smear microscopy (34.9%) testing. Notably, AMR analysis of 56 MTB-positive samples as determined by tNGS revealed high mutation frequencies of 96.4%, 35.7%, 26.8%, and 19.6% in the following AMR-associated genes: rrs, rpoB, katG, and pncA, respectively. The findings of this study provide theoretical support for the differential clinical application of tNGS and Xpert MTB/RIF and suggest that tNGS has greater application value in tuberculosis drug resistance monitoring and prevention.IMPORTANCETargeted next-generation sequencing (tNGS) can be used to perform Mycobacterium tuberculosis (MTB) complex-specific amplification or target capture directly from sputum samples, yielding simultaneous coverage of genes and DNA regions associated with antimicrobial resistance (AMR). Performance comparisons of tNGS and Xpert MTB/rifampicin (RIF) have been empirical. The Xpert MTB/RIF assay is a commercial system that uses the nucleic acid amplification detection method for rapid (2 hours) diagnosis of tuberculosis (TB). The cost of the tNGS and Xpert MTB/RIF assays in this study was similar, at USD 98 and USD 70-104 per sample, respectively, but the time required for tNGS (3 days) was much longer than that required for the Xpert MTB/RIF assay. However, tNGS yielded more accurate results and a larger number of AMR-associated gene mutations, which compensated for the extra time and highlighted the greater application value of tNGS in TB drug resistance monitoring and prevention.

9.
Front Plant Sci ; 15: 1340867, 2024.
Article En | MEDLINE | ID: mdl-38590751

Vacuolar Pi transporters (VPTs) have recently been identified as important regulators of cellular Pi status in Arabidopsis thaliana and Oryza sativa. In the oil crop Brassica napus, BnA09PHT5;1a and BnC09PHT5;1a are two homologs of AtPHT5;1, the vacuolar Pi influx transporter in Arabidopsis. Here, we show that Pi deficiency induces the transcription of both homologs of PHT5;1a genes in B. napus leaves. Brassica PHT5;1a double mutants (DM) had smaller shoots and higher cellular Pi concentrations than wild-type (WT, Westar 10), suggesting the potential role of BnPHT5;1a in modulating cellular Pi status in B. napus. A proteomic analysis was performed to estimate the role of BnPHT5;1a in Pi fluctuation. Results show that Pi deprivation disturbs the abundance of proteins in the physiological processes involved in carbohydrate metabolism, response to stimulus and stress in B. napus, while disruption of BnPHT5;1a genes may exacerbate these processes. Besides, the processes of cell redox homeostasis, lipid metabolic and proton transmembrane transport are supposed to be unbalanced in BnPHT5;1a DM under the -Pi condition. Noteworthy, disruption of BnPHT5;1a genes severely alters the abundance of proteins related to ATP biosynthesis, and proton/inorganic cation transmembrane under normal Pi condition, which might contribute to B. napus growth limitations. Additionally, seven new protein markers of Pi homeostasis are identified in B. napus. Taken together, this study characterizes the important regulatory role of BnPHT5;1a genes as vacuolar Pi influx transporters in Pi homeostasis in B. napus.

10.
Front Endocrinol (Lausanne) ; 15: 1354511, 2024.
Article En | MEDLINE | ID: mdl-38590822

Background: Diabetic peripheral neuropathy (DPN) contributes to disability and imposes heavy burdens, while subclinical DPN is lack of attention so far. We aimed to investigate the relationship between vitamin D and distinct subtypes of subclinical DPN in type 2 diabetes (T2DM) patients. Methods: This cross-sectional study included 3629 T2DM inpatients who undertook nerve conduction study to detect subclinical DPN in Zhongshan Hospital between March 2012 and December 2019. Vitamin D deficiency was defined as serum 25-hydroxyvitamin D (25(OH)D) level < 50 nmol/L. Results: 1620 (44.6%) patients had subclinical DPN and they were further divided into subgroups: distal symmetric polyneuropathy (DSPN) (n=685), mononeuropathy (n=679) and radiculopathy (n=256). Compared with non-DPN, DPN group had significantly lower level of 25(OH)D (P < 0.05). In DPN subtypes, only DSPN patients had significantly lower levels of 25(OH)D (36.18 ± 19.47 vs. 41.03 ± 18.47 nmol/L, P < 0.001) and higher proportion of vitamin D deficiency (78.54% vs. 72.18%, P < 0.001) than non-DPN. Vitamin D deficiency was associated with the increased prevalence of subclinical DPN [odds ratio (OR) 1.276, 95% confidence interval (CI) 1.086-1.501, P = 0.003] and DSPN [OR 1. 646, 95% CI 1.31-2.078, P < 0.001], independent of sex, age, weight, blood pressure, glycosylated hemoglobin, T2DM duration, calcium, phosphorus, parathyroid hormone, lipids and renal function. The association between vitamin D deficiency and mononeuropathy or radiculopathy was not statistically significant. A negative linear association was observed between 25(OH)D and subclinical DSPN. Vitamin D deficiency maintained its significant association with subclinical DSPN in all age groups. Conclusions: Vitamin D deficiency was independently associated with subclinical DSPN, rather than other DPN subtypes.


Diabetes Mellitus, Type 2 , Diabetic Neuropathies , Mononeuropathies , Vitamin D Deficiency , Humans , Risk Factors , Diabetic Neuropathies/epidemiology , Diabetic Neuropathies/etiology , Cross-Sectional Studies , Vitamin D Deficiency/complications , Vitamin D Deficiency/epidemiology , Mononeuropathies/complications
11.
Oncol Lett ; 27(5): 238, 2024 May.
Article En | MEDLINE | ID: mdl-38601183

Glucose metabolism, as a novel theory to explain tumor cell behavior, has been intensively studied in various tumors. The present study explored the long non-coding RNAs (lncRNAs) related to glycolysis in grade II-III glioma, aiming to provide a promising target for further research. Pearson correlation analysis was used to identify glycolysis-related lncRNAs. Univariate/multivariate Cox regression analysis and the Least Absolute Shrinkage and Selection Operator algorithm were applied to identify glycolysis-related lncRNAs to construct a prognosis prediction model. Subsequently, multi-dimensional evaluations were used to verify whether the risk model could predict the prognosis and survival rate of patients with grade II-III glioma. Finally, it was verified by functional experiments. The present study finally identified seven glycolysis-related lncRNAs (CRNDE, AC022034.1, RHOQ-AS1, AL159169.2, AL133215.2, AC007098.1 and LINC02587) to construct a prognosis prediction model. The present study further investigated the underlying immune microenvironment, somatic landscape and functional enrichment pathways. Additionally, individualized immunotherapeutic strategies and candidate compounds were identified to guide clinical treatment. The experimental results demonstrated that CRNDE could increase the proliferation of SHG-44 cells. In conclusion, a large sample of human grade II-III glioma in The Cancer Genome Atlas database was used to construct a risk model using glycolysis-related lncRNAs to predict the prognosis of patients with grade II-III glioma.

12.
Plants (Basel) ; 13(6)2024 Mar 16.
Article En | MEDLINE | ID: mdl-38592851

Receptor kinases DRUS1 (Dwarf and Runtish Spikelet1) and DRUS2 are orthologues of the renowned Arabidopsis thaliana gene FERONIA, which play redundant roles in rice growth and development. Whether the two duplicated genes perform distinct functions in response to environmental stress is largely unknown. Here, we found that osmotic stress (OS) and ABA increased DRUS1 expression while decreasing DRUS2. When subjected to osmotic stress, the increased DRUS1 in drus2 mutants suppresses the OsIAA repressors, resulting in a robust root system with an increased number of adventitious and lateral roots as well as elongated primary, adventitious, and lateral roots, conferring OS tolerance. In contrast, the decreased DRUS2 in drus1-1 mutants are not sufficient to suppress OsIAA repressors, leading to a feeble root system with fewer adventitious and lateral roots and hindering seminal root growth, rendering OS intolerance. All these findings offer valuable insights into the biological significance of the duplication of two homologous genes in rice, wherein, if one is impaired, the other one is able to continue auxin-signaling-mediated root growth and development to favor resilience to environmental stress, such as water shortage.

13.
Cell Death Discov ; 10(1): 111, 2024 Mar 04.
Article En | MEDLINE | ID: mdl-38438372

SULF1 has been implicated in a number of malignancies. The function of SULF1 in gastric cancer is disputed. The objective of this study was to examine the role and underlying molecular mechanisms of SULF1 in the context of gastric cancer. We found that the expression of SULF1 was increased in gastric cancer, especially in cancer-associated fibroblasts. The overexpression of SULF1 was found to be significantly correlated with unfavorable prognosis among individuals diagnosed with gastric cancer. Functionally, cancer-associated fibroblasts-derived SULF1 served as a oncogenic molecule which facilitated gastric cancer cells metastasis and CDDP resistance. Mechanistically, SULF1 regulated the communication between gastric cancer cells and cancer-associated fibroblasts in tumor microenvironment as a signaling molecule. Cancer-associated fibroblasts-secreted SULF1 interfered with the interaction between TGF-ß1 and TGFBR3 by combining with TGFBR3 on gastric cancer cell membrane, subsequently activated TGF-ß signaling pathway. In conclusion, our findings have presented novel approaches for potential treatment and prognosis prediction in individuals diagnosed with gastric cancer through the targeting of the CAFs-SULF1-TGFBR3-TGF-ß1 signaling axis.

14.
World J Diabetes ; 15(2): 220-231, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38464364

BACKGROUND: The effects of viral hepatitis (VH) on type 2 diabetes (T2D) remain controversial. AIM: To analyze the causal correlation between different types of VH and T2D using Mendelian randomization (MR). METHODS: Single nucleotide polymorphisms of VH, chronic hepatitis B (CHB), chronic hepatitis C (CHC) and T2D were obtained from the BioBank Japan Project, European Bioinformatics Institute, and FinnGen. Inverse variance weighted, MR-Egger, and weighted median were used to test exposure-outcome associations. The MR-Egger intercept analysis and Cochran's Q test were used to assess horizontal pleiotropy and heterogeneity, respectively. Leave-one-out sensitivity analysis was used to evaluate the robustness of the MR analysis results. RESULTS: The MR analysis showed no significant causal relationship between VH and T2D in Europeans [odds ratio (OR) = 1.028; 95% confidence interval (CI): 0.995-1.062, P = 0.101]. There was a negative causal association between CHB and T2D among East Asians (OR = 0.949; 95%CI: 0.931-0.968, P < 0.001), while there was no significant causal association between CHC and T2D among East Asians (OR = 1.018; 95%CI: 0.959-1.081, P = 0.551). Intercept analysis and Cochran's Q test showed no horizontal pleiotropy or heterogeneity (P > 0.05). Sensitivity analysis showed that the results were robust. CONCLUSION: Among East Asians, CHB is associated with a reduced T2D risk, but this association is limited by HBV load and cirrhosis. Although VH among Europeans and CHC among East Asians are not associated with the risk of T2D, focusing on blood glucose in patients with CHC is still relevant for the early detection of T2D induced by CHC-mediated pathways of hepatic steatosis, liver fibrosis, and cirrhosis.

15.
Front Neurol ; 15: 1329142, 2024.
Article En | MEDLINE | ID: mdl-38469588

Objective: To reveal the safety and efficacy of clipping and coiling in patients with ruptured distal anterior cerebral artery aneurysms (DACAA) and to calculate the risk factors affecting the two-year survival rate in follow-up patients. Methods: A retrospective study was conducted on the data of 140 patients (21 were lost to follow-up) with DACAA rupture who were treated by neurosurgery at 12 medical centers over a 2-year period, from January 2017 to December 2020. Univariate analysis was used to examine factors contributing to poor patient prognosis and to compare the prognosis of coiling and clipping treatments. Survival analysis was employed to compare survival rates between coiling and clipping, and risk factors affecting patient survival were analyzed using multivariate Cox regression analysis. Results: Out of 140 patients with ruptured DACAA, 80 (57.1%) were male, and 60 (42.9%) were female. A total of 111 (79.3%) patients were classified under Hunt-Hess scale grades I-III, while 95 (67.9%) were graded I-III according to the WFNs classification. Among them, 63 (45%) were treated with clipping, and 77 (55%) underwent coiling. Within 2 years of discharge from the hospital, 31 (59.6%) patients who underwent clipping and 54 (80.6%) who underwent coiling had a good prognosis. Multivariate Cox regression analysis revealed that only WFNs classification (I-III) was a protective factor influencing the 2-year survival of patients with ruptured DACAA. Conclusion: In the reality of medical practice, neurosurgeons are more likely to choose clipping as the treatment for cases with WFNs classification than or equal to III. There was no difference between clipping and coiling in the two-year prognosis at discharge. High priority should be given to DACAA cases with WFNs grading (I-III), as better outcomes can be achieved. The sample size will continue to be enlarged in the future to obtain more accurate findings. Abstracts for reviews, technical notes, and historical vignettes do not need to be separated into sections. They should begin with a clear statement of the paper's purpose followed by appropriate details that support the authors' conclusion(s).

16.
Dalton Trans ; 53(15): 6830-6838, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38546485

A series of mixed-anion Fe(NH2trz)3(BF4)2-x(SiF6)x/2 spin crossover complexes is obtained modifying the reaction time but also using an increase amount of tetraethyl orthosilicate as the source for the production and the incorporation of SiF62- competing with the BF42- anions present in the mother solution. The increase of the SiF62- anion inclusion to the detriment of the BF4- counterpart induces a shift of the temperature transition toward high temperatures leading to interesting bistability properties around room temperature with T1/2 spanning from 300 K to 325 K. Moreover, the implementation of a solid-liquid post synthetic modification approach from the Fe(NH2trz)3(BF4)2 parent complex with identical TEOS proportions and under certain experimental conditions lead systematically to the same Fe(NH2trz)3(BF4)1.2(SiF6)0.4 composition. This compound presents an abrupt spin crossover behaviour with a narrow hysteresis loop just above room temperature (320 K), which is stable under thermal cycling and along time with no specific storage conditions. Such crystalline powder sample incorporates homogeneous rod-shaped particles whose formation and physical properties can be followed simultaneously using infra-red spectroscopy, dynamic light scattering (DLS), transmission electronic microscopy (TEM) and optical reflectance. The observation of a stabilized single ca. 800 nm population of mixed-anion particles starting from insoluble various sizes (from nano- to microscale) Fe(NH2trz)3(BF4)2 particles supports the key role of the solvent (water molecules) on the separation, the reactivity and the reorganization of the 1D iron-triazole chains forming the packing of the structure.

17.
Mol Metab ; 83: 101927, 2024 Mar 27.
Article En | MEDLINE | ID: mdl-38553003

OBJECTIVE: Hepatic insulin resistance, which leads to increased hepatic gluconeogenesis, is a major contributor to fasting hyperglycemia in type 2 diabetes mellitus (T2DM). However, the mechanism of impaired insulin-dependent suppression of hepatic gluconeogenesis remains elusive. Delta/Notch-like epidermal growth factor (EGF)-related receptor (DNER), firstly described as a neuron-specific Notch ligand, has been recently identified as a susceptibility gene for T2DM through genome-wide association studies. We herein investigated whether DNER regulates hepatic gluconeogenesis and whether this is mediated by enhanced insulin signaling. METHODS: The association between DNER, tribbles homolog 3 (TRB3) and Akt signaling was evaluated in C57BL/6J, ob/ob and db/db mice by western blot analysis. DNER loss-of-function and gain-of-function in hepatic gluconeogenesis were analyzed by western blot analysis, quantitative real-time PCR, glucose uptake and output assay in AML-12 cells and partially validated in primary mouse hepatocytes. Hepatic DNER knockdown mice were generated by tail vein injection of adenovirus to confirm the effects of DNER in vivo. The interaction between DNER and TRB3 was investigated by rescue experiments, cycloheximide chase analysis, co-immunoprecipitation and immunofluorescence. The potential insulin-stimulated phosphorylation sites of DNER were determined by co-immunoprecipitation, LC-MS/MS analysis and site-specific mutagenesis. RESULTS: Here we show that DNER enhanced hepatic insulin signaling in gluconeogenesis by inhibiting TRB3, an endogenous Akt inhibitor, through the ubiquitin-proteasome degradation pathway. In AML-12 hepatocytes, insulin-stimulated activation of Akt and suppression of gluconeogenesis are attenuated by DNER knockdown, but potentiated by DNER over-expression. In C57BL/6J mice, hepatic DNER knockdown is accompanied by impaired glucose and pyruvate tolerance. Furthermore, the in vitro effects of DNER knockdown or over-expression on both Akt activity and hepatic gluconeogenesis can be rescued by TRB3 knockdown or over-expression, respectively. In response to insulin stimulation, DNER interacted directly with insulin receptor and was phosphorylated at Tyr677. This site-specific phosphorylation is essential for DNER to upregulate Akt activity and then downregulate G6Pase and PEPCK expression, by interacting with TRB3 directly and inducing TRB3 proteasome-dependent degradation. CONCLUSIONS: Taken together, the crosstalk between insulin-Akt and DNER-TRB3 pathways represents a previously unrecognized mechanism by which insulin regulates hepatic gluconeogenesis.

18.
Animals (Basel) ; 14(6)2024 Mar 07.
Article En | MEDLINE | ID: mdl-38539922

Transport stress can cause damage to animals. In this experiment, 60 four-month-old lambs were randomly divided into three groups: CG (basal diet), EG (basal diet + 375 mg/d/lamb electrolytic multivitamin), and NG (basal diet + 200 mg/d/lamb neomycin). The results were as follows: during road transport, in all groups, the levels of SOD, T-AOC, and GSP-Px, and mRNA expressions of CAT, SOD, Nrf2, HO-1, and Bcl-2 in the jejunum and colon decreased (p < 0.01). However, mRNA expressions of Keap1, IL-1ß, IL-2, IL-12, Bax, and Caspase3 in the jejunum and colon and the level of MDA increased (p < 0.01). The concentrations of IgA, IgG, and sIgA in the jejunum and colon also decreased (p < 0.01). In the EG and NG, the levels of SOD (p < 0.05) and T-AOC (p < 0.01) increased, and the level of MDA decreased (p < 0.01). However, in the jejunum, the levels of SOD and T-AOC, the concentrations of IgA and IgG, and mRNA expression of Bcl-2 increased (p < 0.05). mRNA expressions of IL-1, IL-2, and Caspase 3 (p < 0.05), and mRNA expression of IL-12 (p < 0.01) decreased. In the colon, SOD activity and the concentration of sIgA increased (p < 0.01). The level of MDA and mRNA expressions of IL-2 and Caspase 3 also decreased (p < 0.05). In the jejunum and colon, mRNA expression of SOD (p < 0.05) and mRNA expression of Nrf2 increased (p < 0.01). mRNA expression of Keap1 (p < 0.05) and Bax (p < 0.01) decreased. In summary, road transport can cause a decrease in antioxidant activity and immunity of lambs and an increase in oxidative damage. Electrolytic multivitamins and neomycin can improve immune function and potentially reduce oxidative damage to the jejunum and colon.

19.
J Med Chem ; 67(6): 5075-5092, 2024 Mar 28.
Article En | MEDLINE | ID: mdl-38483150

Aberrantly elevated adenosine in the tumor microenvironment exerts its immunosuppressive functions through adenosine receptors A2AR and A2BR. Antagonism of A2AR and A2BR has the potential to suppress tumor growth. Herein, we report a systemic assessment of the effects of an indole modification at position 4, 5, 6, or 7 on both A2AR/A2BR activity and selectivity of novel 2-aminopyrimidine compounds. Substituting indole at the 4-/5-position produced potent A2AR/A2BR dual antagonism, whereas the 6-position of indole substitution gave highly selective A2BR antagonism. Molecular dynamics simulation showed that the 5-cyano compound 7ai had a lower binding free energy than the 6-cyano compound 7aj due to water-bridged hydrogen bond interactions with E169 or F168 in A2AR. Of note, dual A2AR/A2BR antagonism by compound 7ai can profoundly promote the activation and cytotoxic function of T cells. This work provided a strategy for obtaining novel dual A2AR/A2BR or A2BR antagonists by fine-tuning structural modification.


Pyrimidines , Receptor, Adenosine A2A , Receptor, Adenosine A2B , Receptor, Adenosine A2A/metabolism , Receptor, Adenosine A2B/metabolism , Adenosine/metabolism , Indoles
...